CLINICAL DATA – BETAINES

Betaine is found everywhere
The saltier and drier the environment, the higher levels of betaine are found in living cells.

Betaine is found in every kingdom of life. Especially seawater invertebrates have high levels of betaine. In the kidney, betaine counteracts the perturbant effect of urea.

Source: Organic osmolytes as compatible, metabolic and counteracting cytoprotectants in high osmolarity and other stresses – Paul H Yancey. Biology department, Whitman College, Walla Walla, WA 99362, USA. Email: yancey@whitman.edu

Betaine attracts water
- Betaine is an organic osmolyte that attracts water but does not immobilise it.
- Betaine protects cellular macromolecules from external disturbances
- To maintain cell water balance cells can accumulate and release betaine
Betaine counteracts the harmful effects of urea and salt in kidney cells

Diffusion across the membrane
Water follows osmotically active compounds such as potassium and organic osmolytes.
Nature has selected osmolytes that do not...
- Interfere cellular processes
- Upset electrostatic balance of the cell
- Perturb cellular structures

Osmolytes are compounds that preserve intracellular solution for metabolic activities and macromolecular structure against osmotic stress.

Cell volume regulation
Cells regulate their volume and water balance by absorbing or effluxing osmolytes

![Cell volume regulation diagram](image)

Water in skin
- Skin is needed to prevent water loss from the body
- Hydration of the upper part of skin is important for preserving its elasticity and structure
- Water is needed to manage the normal differentiation of the skin (enzyme reactions)

Factors contributing barrier function of the skin
- Stratum corneum – dead skin layer:
 - Extracellular lipids (ceramides, cholesterol etc.)
 - Keratin and natural moisturizing factor (NMF)
- Stratum granulosum – living skin layer:
 - Tight junctions
 - Osmolyte transporters (esim. BGT-I, SMIT, TAUT)
 - Extracellular hyaluronic acid.
Water transport in skin

1Janke et al 2003, 2 Boury-Jamot et al 2006, 3 Kirchner et al. 2010

Betaine transport through the Stratum corneum
Tiihonen, K.¹, Suhonen, M.² and Tolonen, A.³.

- To evaluate the amount of topically applied betaine reaching the living keratinocytes the permeability of betaine across the stratum corneum (SC) was measured in Franz chambers. Betaine concentrations were analysed using LC/MS/MS method.
- Apparent permeability coefficient for betaine in water was 2.5×10^9 (cm/s) and in emulsion 4×10^9 (cm/s). The values are comparable to osmolytes such as glycerol and mannitol.

Betaine can protect skin cells against UV radiation
Oxidative stress caused by the UV:
- Speed up collagen break down. Betaine can increase fibroblast growth and collagen production¹ which are important for skin structure and elasticity.
• Dehydrates the skin cells. Keratinocytes2,3 and fibroblasts4 use betaine to maintain cell water balance against dehydration. Water is need to optimal keratinocyte differentiation.

Source:

Osmolyte strategy of the keratinocytes1,2
Hyperosmotic stress:
• Water efflux > cell shrinkage
• Increased expression of betaine, taurine and myo-inositol transporters (BGT-I, SMIT, TAUT)
• Increased uptake of osmolytes > cell hydration retained

Oxidative stress caused by UVA and UVB radiation
• Opening of K+ channels > K+ and water efflux > cell shrinkage
• Increased betaine, inositol and taurine transporters (BGT-I, SMIT, TAUT)
• Increased uptake of the osmolytes > cell hydration retained

Source:

Ultraviolet A induces transport of compatible organic osmolytes in human dermal fibroblasts

Ulrich Warskulat1, Stefanie Broekmann1, Ingo Felsner2, Heidi Brenden3, Susanne Grether-Beck1 and Dieter Hausünger3

1Department of Dermatology, University of Düsseldorf, Germany
2Institute for Biomedical Research (IBF) at the Heinrich-Heine University Duesseldorf GmbH, Duesseldorf, Germany
3Correspondence: Dr. Ulrich Warskulat, Klinik für Dermatologie, Hypertologie und Allergologie, Heinrich-Heine-Universität Duesseldorf, Moehrenstrasse 3, 40225 Duesseldorf, Germany, Tel.: +49 211 83 89335, Fax: +49 211 81 18752

dr.urich.warskulat@uni-duesseldorf.de

Effects of betaine in skin cells

- Keratinocytes use betaine to maintain cell homeostasis against osmotic and oxidative stress (Warskulat et al. 2004)
- Fibroblasts use betaine to maintain cell homeostasis against osmotic stress (Warskulat et al. 2008)
- Betaine can increase fibroblast growth and collagen production (Vennet et al. 2002)
Keratinocytes and epidermal tight junction barrier

- The Stratum corneum serves as the principal barrier against the percutaneous penetration of chemicals and microbes and withstands mechanical forces.
- Epidermal tight junctions at the level of granular layer contribute to the inside-out and to the outside-in skin barrier and are important for preventing water loss.
- Proper functioning of tight junctions in skin has also been implicated to be important in preventing bacterial and viral infections, allergy, and in UV-induced epidermal barrier perturbation.

Keratinocytes as a barrier model in vitro

- Keratinocytes isolated from normal adult human skin are different in cell culture inserts. During the differentiation, the cells form tight junctions (=TJs) between the cells.
- The cell layer in itself is impermeable to water and water-soluble substances, but the flow of these solutes through TJs can be measured with chopstick electrodes (Transepithelial electrical resistance = TEER).
- The greater the resistance to ion flux across the TJs, the stronger the TJs between the cells and the higher the TEER values are.

![Image of keratinocytes differentiation](image_url)
Betaine Increase Tight Junction Strength

Source: Poster presentation: Betaine increases tight junction integrity in epidermal keratinocytes; H. Putaala, K. Tiihonen, N. Rautonen: Danisco Finland Oy, Health & Nutrition, Sokeritehtaantie20, 02460 Finland. 40th Annual Meeting of the European Society for Dermatological Research, Helsinki, Finland, September 8th to 10th 2010.

Differentiated keratinocytes were treated with betaine (0-500µM) from the apical side and the strength of tight junctions was measured using chopstick electrodes at different time points.

Betaine increases the strength of tight junctions compared to control without betaine at 24 h from application, but partially already after 1 h.

% Change in TEER = Percentage change in TEER calculated from time point 0 h, mean ± SE shown, *p<0.05, **p<0.01, ***p<0.001.